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Abstract

Through their effect in down-regulation of gene transcripts, 
microRNAs play an important role in a range of biological 
processes such as development, differentiation, and disease. 
Although many methods have been proposed to discover 
messenger RNA (mRNA)-microRNA interactions, most are 
either time consuming or lack accuracy. Here, we present an 
empirical method for identifying direct microRNA targets using 
reciprocal mRNA expression response to mimic and inhibitor 
treatments. The method is supported through analysis of the 
enriched presence of microRNA seed complement sequences. 
Using reverse transcription quantitative real-time PCR (RT-qPCR) 
for confirmation, empirically determined miR-122 targets were 
compared to targets predicted by widely used microRNA target 
prediction programs. Overall, we conclude empirical detection is 
a more time efficient way to identify mRNA-microRNA interactions 
than selecting targets from lists generated by microRNA-target 
prediction programs.
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Introduction

microRNAs are a class of small non-coding RNAs, 22 
nucleotides (nt) in length, involved in post-transcriptional gene 
regulation of up to 50% of protein-coding genes1-3. Mammalian 
mature microRNAs down-regulate gene expression primarily 
by binding to the 3’ UTR4-7. The mRNA-microRNA binding 
occurs through the seed region of the microRNA (minimally 
positions 2-7 from the 5’ end of the mature strand)1. It is 
estimated that each microRNA family member may regulate 
hundreds of gene targets8. Even though some rules for mRNA-
microRNA target recognition have been elucidated, prediction 
programs do not yet identify all targets9-11.

Current methods for microRNA target discovery utilize 
one or more of the following approaches: microRNA target 
prediction algorithms1, the anti-correlation of microRNA 
and gene target expression within large datasets12 or 
immunoprecipitation of RISC13-15. Techniques involving  
cell-based crosslinking and immunoprecipitation of the 
Ago complex have also been developed, which are analyzed 
by deep sequencing and are intended to not only identify 
targets, but also to isolate specific regions of mRNA-
microRNA binding16, 17. While it has been demonstrated 
that novel targets can be identified with such enrichment 
techniques, they present technical challenges and are still 
being adopted by the broader community. Each method has 
limitations with regard to accuracy and specificity as well as 
the long time commitment and technical expertise required 
to perform each experiment.

Target prediction algorithms search for seed complements 
in target mRNA 3’ UTRs and use sequence conservation 
to predict microRNA binding sites. These predictions are 
confirmed experimentally by modulating the levels of a 
microRNA using mimics and inhibitors18, 19 and measuring 
effects on the predicted targets. A common approach is to 
systematically examine genes from target prediction lists 
based on the biology of interest20 where only 30-60% of the 
predictions are confirmed experimentally21-25. This indicates 
that there are additional parameters affecting microRNA 
target regulation which limit the accuracy of current 
prediction algorithms. Additional experimentally determined 
targets are also missed by predictions that do not account 
for the biological context of each system1, 19.

An empirical approach allows one to discover new targets 
and new biology in addition to confirming predicted targets.

Since high throughput gene expression microarray analysis 
remains a widely used, fast, and cost-effective approach, 
we used this as a basis for a robust method to efficiently 
identify microRNA targets. Expression changes of a direct 
gene target should be anti-correlated when treated with 
mimics and inhibitors independently. Mimics typically have 
stronger, more robust effects while inhibitors have more 
subtle effects26; therefore, when using inhibitors alone, 
many researchers have been unable to distinguish primary 
effects from background noise in small experiments. 
Previous studies using gene expression microarrays have 
focused on use of microRNA mimics alone12, 27-29 with few 
exceptions where both mimics and inhibitors were used in 
a specific context30, 31. 

Here, we investigate whether combining the use of miRIDIAN™ 
microRNA Mimics and Hairpin Inhibitors to modulate microRNA 
levels would allow for identification of a smaller and more 
biologically relevant set of candidate targets. As a model 
system we utilize miR-122, a prominent microRNA in liver cells 
that is involved in cholesterol metabolism and Hepatitis C viral 
replication32, 33. Empirically measured microRNA targets are 
bioinformatically probed for potential direct mRNA-microRNA 
interactions by determining enrichment of seed complement 
sites1 in their 3’ UTR regions. Finally, we perform individual 
evaluation of proposed targets by RT-qPCR, comparing these 
empirically detected targets to those predicted by common 
microRNA targeting algorithms. Overall, we conclude that 
empirical detection using modulation of microRNA by miRIDIAN 
Mimics and Hairpin Inhibitors leads to identification of high 
confidence targets in a more efficient manner than one-by-one 
follow up of targets from publicly available microRNA target 
prediction algorithms.

Results and conclusions

Validation of miRIDIAN miR-122 mimic and hairpin  
inhibitor effects 

In order to optimize experimental parameters such as 
dose, time point, and transfection method for use with 
whole genome microarray analysis, we tested the effects 
of miRIDIAN Mimics and Hairpin Inhibitors on a previously 
reported endogenous target of miR-122, ALDOA34, 35. Huh-7 
cells were selected because the endogenous microRNA is 
expressed at a moderate level and can be both up- and 
down-regulated in the same cell line. Message levels of 
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ALDOA are reduced by introduction of a miRIDIAN miR-122 
Mimic and are conversely increased by introduction of a 
miR-122 Hairpin Inhibitor in a dose- and time-dependent 
manner (Figure 1). The mimic effect is up to two-fold stronger 
than the inhibitor effect, while the inhibitor effect takes 
longer to appear, becoming significant between 3 and 7 
days. Optimal conditions for observation of ALDOA gene 
modulation were 50 nM and 3 days for mimics and 20 nM 
and 6 days for inhibitors.

Discovery of additional miR-122 gene targets by whole 
genome expression microarray analysis

Using the optimal transfection conditions determined above, 
genome-wide expression profiling was applied to determine 
regulation of miR-122 gene targets (Figure 2). To increase 
confidence in the data, we performed four biological 
transfection replicates of both miR-122 mimic and inhibitor. 
The microarray ratio data was limited to transcripts that 
correspond to records in RefSeq 39, as hits are required to 
have an annotated 3’ UTR for subsequent analysis. For each 
set of transfections, transcript sequences were selected 
as significantly modulated, relative to the lipid-treated 
control, if they had a p-value of ≤ 0.01 (Rosetta error model) 
in a specified number of arrays in that group. Since the 
expression of directly-targeted transcripts are expected to be 
anti-correlated with microRNA expression, transcripts were 
removed if the direction of their expression change was the 
same as microRNA modulation. Intersections of these lists 
were generated at various stringencies and using increasing 
numbers of replicates (Tables 1 and 2). No transcripts passed 
this analysis workflow when negative control mimic and 
inhibitor molecules were analyzed (Figure 1).

We observed that when using only a fold-change cutoff, the 
subtle effect of inhibitors was not discerned, indicating a 
large number of false negatives (data not shown), while use 
of a p-value threshold resulted in enrichment for targets that 
contain seed complement sites. Examining the intersection 
of mimic-and inhibitor-affected genes is important for 
several reasons. The number of genes in the target list for 
either experiment alone is prohibitively large and cannot 
be thoroughly validated using lower throughput methods 
(Table 1), whereas an intersection list results in a smaller 
list for validation (Table 2). Transfection replicates are used 
to narrow this list even further and allow one to select a 

number of genes that can be more thoroughly studied given 
the time and resource constraints of any given project. For 
example, the intersection of the significant anti-correlated 
genes from two of the four miR-122 mimic-treated samples 
and one of the four inhibitor-treated samples narrowed 
down the potential target list from approximately 750 or 
1,750 genes in either experiment alone (Table 1) to a much 
smaller list of 22 in this more stringent intersection set 
(Table 2 and Figure 3A). Due to the subtle effects of inhibitors 
and the longer time points required for their action, false 
negatives are a great concern due to the overall fluctuation 
in gene expression over the course of the experiment. 
Taking this into account, we relaxed the criteria for inhibitors 
to require significant modulation in only one or two out 
of the four replicates while maintaining more stringent 
reproducibility criteria for mimics. This yields a slightly larger 
and yet still high-confidence target list as evidenced by 
RT-qPCR assessment of target modulation.

Replicates Mimics down Inhibitors up

1 of 4 1617 1757

2 of 4 753 747

3 of 4 401 346

4 of 4 183 65

Table 1: Transcripts significantly modulated by miR-122 per 
number of biological replicates passing threshold. The number 
of transcripts down-regulated by miRIDIAN miR-122 Mimic 
(50 nM, 3 day time point) or up-regulated following treatment 
with the miRIDIAN Hairpin Inhibitor (20 nM, 6 day time point) 
all passing a p-value ≤ 0.01 versus number of biological 
replicates passing threshold.

Table 2: Number of transcripts both down-regulated by 
mimic and up-regulated by inhibitor combined with the number 
of biological replicates passing threshold. The intersection 
of up-and down-regulated transcripts as a function of the 
stringency of replicate threshold. Number of replicates 
designated in bold headings.
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4 2 3 3 6

3 4 6 7 12

2 8 13 15 35

1 10 15 22 60
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Seed complement occurrence analysis of potential 
microRNA targets

A bioinformatic method to assess whether differentially 
expressed genes are likely to be direct targets of 
microRNAs involves determining the occurrence of seed 
complement sequences in their 3’ UTRs1. We looked at 
miR-122 seed complement enrichment in the 3’ UTRs 
of the 22 most strongly regulated transcripts for three 
sets of data: treatment with miRIDIAN mimic-only alone, 
inhibitor-only alone, and an intersection of mimic-only 
and inhibitor-only treatment (Figure 3). This analysis 
demonstrates that the intersection set has the highest seed 
complement enrichment (compared to the expected seed 
complement enrichment of a random length-matched set of 
the same number of 3’ UTRs); there is at least one 6mer 3’ 
UTR seed complement in 20 of the 22 transcripts (Table 3). 
Although both the mimic-only and inhibitor-only datasets 
have some 3’ UTR seed complement enrichment (1.6-fold 
and 1.2-fold, respectively), the magnitudes of enrichment 
are smaller than for the intersection set which indicates 
3.75-fold enrichment (Figure 3B).

RT-qPCR confirmation of targets and comparison to 
prediction programs

RT-qPCR was used as a method to support array-detected 
targets as well as to compare this discovery strategy to 
a list of targets generated by commonly used prediction 
programs. Two empirical gene lists were selected to test 
with RT-qPCR: 22 transcripts down-regulated in two of 
four mimic experiments and up-regulated in one of four 
inhibitor experiments, and 60 transcripts that were directly 
targeted in one of four mimic experiments and up-regulated 
in one of four inhibitor experiments (Table 2, Supplemental 
Tables 1, 2). We compared RT-qPCR results of these array 
targets to a list of miR-122 targets generated by the overlap 
of widely used microRNA target prediction programs; 
TargetScan, Pictar, and Miranda, which contained 24 genes 
(Supplemental Table 3).

Confirmation criteria for RT-qPCR experiments included an 
expression change in the appropriate direction (negative for 
mimic and positive for inhibitor) and a multiple test corrected 
p-value of less than or equal to 0.05. For the smaller, more 
stringent set of empirical targets (22) we found 16 (73%) 
transcripts confirmed response to both mimic and inhibitor, 
four (18%) confirmed with mimic treatment only, two (9%) 
confirmed with inhibitor treatment only, and no transcripts 
were unresponsive (Figure 4A, Supplemental Table 4).

Comparing the members of the two array-based target lists 
(of 22 and 60 targets, Supplemental Tables 1 and 2) to their 
target ranking in prediction programs demonstrates that 
many high-confidence targets in the array-based list are 
not predicted by any program. The few that are predicted 
are relatively far down in their respective ranking, so that 
systematic, one-by-one testing of a list of predicted targets 
does not appear to be an efficient target confirmation strategy. 
In the highest confidence set of 16 targets determined by 
microarray and confirmed by RT-qPCR, only four targets were 
predicted by TargetScan (specifically C9 or F86 #33, GPR172A 
#44, LMNB2 #6, and PKM2 #40), two targets were predicted 
by Pictar (C9 or F86 #51 and GPR172A #22), and four targets 
were predicted by Miranda (GALNT3, LMNB2, PRTFDC1, and 
SH3BGRL3; Table 1). The remaining nine high confidence targets 
were not predicted by any of these three programs, illustrating 
that many novel microRNA targets can be discovered using this 
empirical anticorrelative method.

Figure 3: Analysis of potential microRNA targets. A. The Venn 
diagram of the data analysis performed in Rosetta Resolver yielding 
potential microRNA target lists. The repressed group is the set 
of messages significantly down-regulated in any 2 of 4 biological 
replicates of Huh-7 cells at the 50 nM mimic dose (72 hours). 
The derepressed group is the set of messages significantly 
up-regulated in any 1 of 4 biological replicates of Huh-7 cells at the 
20 nM inhibitor dose (144 hours). B. miR-122 seed enrichment in 
proposed intersection workflow compared to targets identified by 
mimic and inhibitor effects alone. The top 22 most down-regulated 
targets (mimic-only targets) as well as the top most up-regulated 
targets (inhibitor-only targets) were identified among four 
microarray replicates and compared to 22 intersection workflow 
targets described in A. The number of seed complements were 
calculated in the target 3’ UTRs (RefSeq 39) for each seed type1. 
Expected background counts were calculated by averaging seed 
counts in 150 trials of randomly chosen 3’ UTR length-matched 
sets (sampled with replacement, excluding actual targets). Actual 
and expected seed counts are listed above each bar, followed by 
a p-value category for significance of enrichment. 

A

B
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There are several strengths of this microRNA target 
identification workflow. In silico prediction models give no 
information as to expression level of predicted targets in 
a particular cell line or system of interest and they do not 
account for biological features or context (transcription/
degradation rates, etc.). Using the whole genome expression 
approach, one can assay both predicted and novel targets 
in an individual context. While many studies look at mimic 
effects exclusively because they are generally of higher 
magnitude, we use the intersection of modulation in both 
directions to address false positive and false negative 
discovery. Modulation by mimics alone will produce a 
large yet artificial target list, since the cells are overloaded 
with a microRNA beyond its native expression level; many 
of the observed effects will be biological false positives. 
However, background variation in gene expression over time 
can obscure specific inhibitor effects upon the microRNA 
and thus produce false negatives. The method presented 

here is reliable, straightforward, and more efficient than a 
gene-by-gene RT-qPCR query of predicted target messages. 
We narrow down the list of microRNA targets for follow 
up to a reasonable size, in this case 22 high confidence 
targets. Starting with a bioinformatic prediction tool, the 
list of targets to individually test would be at least twice 
as long. While some may be concerned that this method 
surveys transcript levels alone, recent studies using mass 
spectrometry and ribosome profiling have shown excellent 
correlation between message and protein changes due to 
microRNA modulation21, 22, making this a good starting point 
for follow up with a protein detection method. Reciprocal 
modulation can also be applied using other large scale 
expression readouts such as Stable Isotope Labeling of 
Amino Acids in Cell Culture (SILAC) or Next Generation 
Sequencing (NGS).

Table 3: Top 22 miR-122 targets determined by microarray experiment and the number of seed complements counted in their 3’ UTRs.

Gene Symbol Accession 6mer-2-7 7mer-2-8 7mer-1A-2-7 8mer-1A-2-8

1 AADACL1 NM_020792.4 2 1 1 1

2 ABR NM_021962.2 2 1 2 1

3 C10orf118 NM_018017.2 4 3 3 2

4 C9orf86 NM_024718.3 3 1 1 1

5 FBXO21 NM_033624.2 2 0 2 0

6 FGF18 NM_003862.1 1 1 0 0

7 GALNT3 NM_004482.3 1 1 1 1

8 GBA3 NM_020973.3 0 0 0 0

9 GPR172A NM_024531.3 1 1 1 1

10 KIAA0101 NM_014736.4 1 0 0 0

11 LCT NM_002299.2 0 0 0 0

12 LMNB2 NM_032737.2 4 2 1 1

13 MASP1 NM_139125.2 5 2 1 1

14 MTHFD2 NM_006636.3 1 0 1 0

15 NPPB NM_002521.2 0 0 0 0

16 PKM2 NM_182470.1 1 1 1 1

17 PLEKHB2 NM_017958.2 2 2 2 2

18 PRTFDC1 NM_020200.5 2 2 0 0

19 RAB42 NM_152304.1 1 0 1 0

20 SFT2D1 NM_145169.1 1 1 1 1

21 SH3BGRL3 NM_031286.3 1 1 0 0

22 SH3MD2 NM_020870.3 1 0 0 0
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Methods

Cell culture, cytotoxicity analysis, quantitation of mRNA by 
branched DNA assay

Huh-7 and HeLa cell lines were plated at 10,000 cells per 
well without antibiotics in 96-well plates and transfected 
after 24 hours using Dharmacon™ DharmaFECT™  
1 (0.2 μL/well; (Cat #T-2001-02) miR-122 miRIDIAN Mimic 
(Cat #C-300591-05-0010) and Hairpin Inhibitor  
(Cat #IH-300591-06-0010) were transfected at 50 and 
20 nM, respectively. Five biological replicates of these 
transfections were completed over the course of 28 months. 
Cells treated with miRIDIAN Mimics were harvested at three 
days post-transfection; cells treated with miRIDIAN Hairpin 
Inhibitors were harvested at six days post-transfection with a 
medium change at day three. Cellular toxicity was measured 
by the resazurin metabolism assay36; all transfected 
wells showed ≥ 85% viability relative to untreated wells. 
ALDOA were measured using the Panomics™ Quantigene™ 
Branched DNA Assay.

Gene expression microarrays

Total RNA was purified using the RNeasy kit including 
on-column Qiagen™ DNase™ digestion, and concentration 
was measured with a spectrophotometer. All samples were 
diluted to a standard concentration of 100 ng/μL. Total 
RNA (650 ng) from each sample was amplified and labeled 
using the Low Input RNA Fluorescent Linear Amplification 
kit (Agilent). Samples were hybridized to the Agilent™ Whole 
Human™ Genome Microarray 4 × 44K. Experimental samples 
were  Revvity Cy5™ labeled and reference samples (lipid-
only transfectants) were Cy3 labeled. Slides were processed 
according to the Agilent protocol and scanned (model 
G2505B) at 5 micron resolution with XDR, data extracted 
(Feature Extraction 9.5.1), and further analyzed using the 
Rosetta Resolver™ Gene Expression Analysis software. 
For each transfection condition, sets of consistently and 
significantly responsive probes among replicate arrays were 
determined by applying two filters. First, probes showing 
inconsistent response directionality among replicates were 
removed; for mimic transfection conditions, only probes 
with negative response (Cy5/Cy3 < 1) were retained while 
for inhibitor conditions, only probes with positive response 
(Cy5/Cy3 > 1) were retained. Second, probes with significant 
response (p-value threshold < 0.01) in some fraction of the 

replicates (for example 3 out of 4) were retained. Unless 
otherwise noted, a p-value threshold of 0.01 was used. 
Only probes annotated with NM-prefixed accession numbers 
in RefSeq 39 were considered (23,558 sequences). 

microRNA seed complement enrichment analysis

For each set of targets, complementary matches to  
miR-122 seeds (6mer, 7mer-m8, 7mer-1A, 8mer37) were 
counted using mRNA sequence data in RefSeq 39, limited 
to a region of the sequence (ORF or 3’ UTR). Background 
counts were obtained by counting seed complements in 
corresponding length-matched sets, also limited by mRNA 
region. Random length-matched sets were constructed 
by ordering all possible sequences by region length, then 
for each actual target sequence (the anchor) randomly 
choosing a sequence within a defined neighborhood window 
around the anchor (sampled with replacement, excluding 
the anchor). The expected value of background counts was 
estimated by repeating counts of random length-matched 
sets for a number of trials. We used a neighborhood window 
size of 600 with 150 trials. Set-wise seed enrichment was 
calculated as the ratio of actual counts to the expected 
value of background counts. Set-wise seed complement 
counts were modeled as a Poisson distribution, using the 
average counts over each random trial as an estimate of 

Figure 4: Diagrams illustrating RT-qPCR confirmation of 
microarray identified and bioinformatically predicted targets. 
A. Results from RT-qPCR of the top 22 microarray targets. B. 
Results from RT-qPCR of the top 24 prediction algorithm targets. 
C. Results from RT-qPCR with an expanded, less stringent list of 60 
microarray targets. 

A

C

BTop 22 Array Targets

All 60 Array Targets

Top 24 Prediction Targets



Reciprocal microRNA modulation identifies gene targets in a biological context.

7www.revvity.com

the Poisson parameter λ. Significance of set-wise seed 
enrichment was calculated by evaluating the cumulative 
distribution function for the actual counts.

Target prediction using publicly available tools

A list of predicted miR-122 targets was created from the 
overlap of three microRNA target prediction algorithms 
(TargetScan Release 5.1, Pictar 2006, and Miranda Sept 2008). 
The TargetScan database (targetscan.org) contained 124 
conserved targets for hsa-miR-122. The Pictar database 
based on Lall et al. 2006 was accessed and queried for 
vertebrates with the dataset of predictions for all human 
microRNAs based on conservation in mammals (human, 
chimp, mouse, rat, dog) for hsa-miR-122a resulting in a list of 
169 targets – 155 excluding replicates (pictar.mdc-berlin.de/). 
The Miranda database (microRNA.org, September 2008 
release) contained a list of 1091 unique gene transcripts for 
miR-122. The overlap of all three lists is 24 transcripts.

High throughput RT-qPCR methods

RNA was isolated using Promega SV 96 Total RNA Isolation 
System (Promega). Total RNA from four replicate plates was 
pooled and 10 µL used for reverse-transcription utilizing the 
Verso cDNA Synthesis Kit with 3:1 (volume:volume) oligo dT 
to random hexamer primers in a 20 µL reaction. Gene 
expression analysis was performed using Thermo Scientific™ 
Solaris™ qPCR Gene Expression Assays (Supplemental 
Table 5) and Master Mix; 4 µL cDNA(3-fold diluted) in a 
16 µL reaction. Six replicate qPCR reactions were prepared 
manually in 96-well plates then condensed robotically into 
384-well white plates and run on an Applied Biosystems™ 
Prism™ 7900HT system with the following cycling program: 
15 minute activation at 95 °C, 40 cycles of 15 seconds 
denaturation at 95 °C and 60 seconds of annealing and 
extension at 60 °C. Relative expression was calculated using 
a ΔΔCq method, normalizing to GAPDH expression and then 
to the lipid-only control samples and reported as a ratio.
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