40 result(s)
Review of selected articles showing the broad applicability of the HAP1 cell line between 2011 and 2019.
HAP1 cell lines are a popular choice to validate a range of research experiments, but if you've never used them before, you want to be sure they are right for you.
After all the hard work of editing your cell line, you want to have confidence in your new research model. So, how do you verify your cell line is what you expect it to be? Could a heterogeneous cell population be obscuring your editing effects? Is observed phenotype being caused by the targeted gene edit, or unintended off-target effects? Here we discus ways to add supporting data to validate your gene-engineering projects.
CRISPR-edited cell lines are a useful tool to validate your antibodies before you start an experiment. They ensure you are using high quality reagents, so you can be confident in your results. Here we explain how you can use our edited cell lines for validation, the challenges to be aware of and how we can help you overcome them.
A major study has been undertaken to gain a better understanding of thousands of mutations in the BRCA1 gene - a key gene in breast and ovarian cancers.
Revealing the role of E3 ubiquitin ligases in DNA damage repair. One of the diverse new uses for the HAP1 cell line, one that has begun to draw significant attention, is in the field of DNA damage repair. A recent paper from Minoru Takata's group highlights this important application of this relatively new tool.
Essential genes are defined as genes that are critical for the survival of an organism. These are considered to be genes that are absolutely required for the cell to grown, proliferate and survive. Deletion of an essential gene from a cell eventually leads to the death of this cell or a severe proliferation defect. As a consequence, it is impossible to generate cells with a knock-out or deletion of essential genes.