The availability of our team to support you has not changed as a result of COVID-19. If there is a way we can assist you, we are here to help - Contact us

CRISPR and RNAi in primary & stem cells

Investigate gene function in biologically relevant cell models

Primary cell models offer increased biological relevance compared to traditional immortalized cell lines. For this reason, researchers often prefer to use primary cells to study gene function, interrogate molecular pathways, or model a disease. Performing gene manipulation in primary cells allows researchers to:

  • Obtain clinically-relevant phenotypic data
  • Avoid misleading hits from non-reproducible phenotypes
  • Reduce the risk of unforeseen downstream complications in the drug discovery pipeline

Horizon offers reliable siRNA and CRISPR based solutions for researchers to perform loss- or gain-of-function experiments in biologically relevant models, including stem cells, immune cells, and neurons.

Gene knockdown

Accell™ self-delivering synthetic siRNA by Dharmacon™ is an ideal solution for non-viral RNAi in difficult-to-transfect primary cell models.

Gene knockout

Edit-R™ synthetic sgRNA are fully guaranteed to edit the target gene of interest, and designed to maximize the effectiveness of functional gene knockout in primary cell lines.

Gene activation

CRISRPa can activate endogenous gene expression for gain-of-function studies within the primary cell's native context.

Jump to a section:

Immune cells

Stem cells

 Neurons


Immune cells

Functional genomics studies in primary immune cells are providing new opportunities for drug target identification and validation, and accelerating the development of diagnostic tools and therapies across a broad spectrum of diseases.

Horizon is focused on optimizing strategies and research tools for RNAi and CRISPR based gene manipulation and screening in primary T and B cell models.

RNA-based screens in primary human immune cells poster

RNA-based screens in primary human immune cells

This poster describes a proof-of concept study of pooled CRISPR knockout screening in primary human T cells. 

Cell-based screens for immuno-oncology research poster

Cell based screens for immuno-oncology discovery

This poster describes CRISPR-Cas9 cell engineering and screening techniques to better understand T cell biology and to find new therapeutic targets.

CRISPR editing & RNAi in primary immune cells

In this webinar, Dr Verena Brucklacher-Waldert discusses strategies and applications for CRISPRko and RNAi in primary human T cells.

The best siRNA transfection reagent for primary macrophages?

A research team in from Ottowa Canada recently published a study recommending DharmaFECT3 transfection reagent as the most effective and least toxic options for siRNA delivery into primary human macrophages.

References for CRISPR based gene editing in primary cells

These papers used Edit-R guide RNA to successfully edit, knockout and/or knock-in their target gene of interest in primary or stem cell lines.

RNAi techniques for difficult-to-transfect immune cell types

This application note outlines an experimental workflow for successful gene knockdown in T-cells using Accell self-delivering siRNA.

References for siRNA mediated gene silencing in primary cells

Find examples of Accell self-delivering siRNA by Dharmacon being used for functional gene knockdown in over 26 different primary cell lines.


Stem cells

Performing functional genomics experiments in primary stem cells provides insight into developmental pathways and the genes involved in hereditary and autoimmune diseases.

Horizon offers many resources to support the use of our research tools for RNAi and CRISPR based gene manipulation and screening in primary stem cell models.

Gene manipulation in human iPSCs

This application note details CRISPR based gene editing methods for functional gene knockout, endogenous gene activation, and HDR mediated fluorescent reporter gene knock-in in human induced pluripotent stem cells.

References for CRISPR based gene editing in stem cells

These papers used Edit-R guide RNA to successfully edit, knockout and/or knock-in their target gene of interest in primary or stem cell lines.

Transfecting siRNA into embryonic stem cells

This application note features the use of DharmaFECT™ transfection reagents for synthetic siRNA transfection into embryonic stem cells.

Build a custom CRISPR or siRNA library

Design your own primary cell screening library with as few as 20 individual siRNA or CRISPR guide RNA using our Cherry-Pick Library Tool. Simply upload your gene list to get started!


Neurons

Functional genomic studies in primary neurons provide better understanding of the genetic basis for neurological diseases such as Alzheimer's, Parkinson's, Huntington’s and multiple sclerosis.

Horizon offers the following resources to support the use of our research tools for RNAi and CRISPR based gene manipulation and screening in primary neuron cell models.

RNAi techniques for difficult-to-transfect neuronal cell types

This application note outlines an experimental workflow for successful gene knockdown in neuroblastoma cells using Accell self-delivering siRNA.

A novel ex vivo application of RNAi for neuroscience

This application note details successful ex vivo RNAi in brain slice culture neurons using Accell siRNA. 

Elucidating the role of factors important in neurite outgrowth using shRNA

 This application note describes how the combination of SMARTvector™ lentiviral shRNA and high content analysis technologies provides multiple layers of important cellular data.