CRISPR goes green: CRISPR-Cas9 in plants

A gene editing revolution is underway in plant systems

Are you aware that the CRISPR-Cas9 system can be used for successful gene editing in plants? CRISPR-Cas9 gene editing has been demonstrated in a wide range plants from the small flower Arabidopsis (Fauser, 2014) to fruit trees (Malnoy, 2016). Additionally, DNA-free methods have been developed to minimize unwanted integration and generate scar-free gene-edited organisms (Woo, 2015 and Svitashev, 2016). Research in this field is already leading to the development of drought-resistant plants that can assist with food production in harder-to-farm regions (Shi, 2016)!

Check out our reading list of selected publications that feature different plant species and methods of delivery.

Recommended Reading

  1. Svitashev, S., C. Schwartz, et al. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7, (2016). [Zea mays – particle bombardment of embryos]
  2. Svitashev, S., J. Young, et al. Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiol. 2, 931-945 (2015). [Zea mays – particle bombardment of embryos]
  3. Woo, J.W., J. Kim, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162-1164 (2015). [Arabidopsis, Oryza sativa, and Lactuca sativa – protoplast transfection]
  4. Subburaj, S., S. J. Chung, et al. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep. 7, 1535-1544 (2016). [Petunia × hybrida – protoplast transfection]
  5. Zhang, Y., Z. Liang, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, (2016). [Triticum aestivum – particle bombardment of protoplasts]
  6. Malnoy, M., R. Viola, et al. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 7, (2016). [Chardonnay and Golden Delicious – protoplast transformation]
  7. Baek, K. D. H. Kim, et al. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6, (2016). [Chlamydomonas reinhardtii – transformation]
  8. Li, J.F., J.E. Norville, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688-691 (2013). [Arabidopsis thaliana and Nicotiana benthamiana – PEG-protoplast transfection, leaf agroinfiltration]
  9. Jiang, W., H. Zhou, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, e188 (2013). [Arabidopsis thaliana, Nicotiana benthamiana, Oryza sativa and sorghum bicolor - leaf agroinfiltration, PEG-protoplast transfection]
  10. Mao, Y., H. Zhang, et al. Application of the CRISPR-Cas System for Efficient Genome Engineering in Plants. Mol. Plant. 6, 2008-2011 (2013). [Arabidopsis thaliana and Oryza sativa - agro-transformation by floral dip, stable agro-transformation]
  11. Fauser, F., S. Schiml, et al. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348-359 (2014). [Arabidopsis thaliana - agro-transformation by floral dip, stable agro-transformation]
  12. Peterson, B.A., D.C. Haak, et al. Genome-Wide Assessment of Efficiency and Specificity in CRISPR/Cas9 Mediated Multiple Site Targeting in Arabidopsis. PLoS One. 11, e0162169 (2016). [Arabidopsis thaliana – agro-transformation by floral dip]
  13. Pyott, D.E., E. Sheehan, et al. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17, 1276-1288 (2016). [Arabidopsis thaliana – agro-transformation by floral dip]
  14. Nekrasov, V., B. Staskawicz, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693 (2013). [Nicotiana benthamiana - leaf agroinfiltration]
  15. Upadhyay, S.K., J. Kumar, et al. RNA-Guided Genome Editing for Target Gene Mutations in Wheat. G3 (Bethesda) 3, 2233-2238 (2013). [Nicotiana benthamiana and Triticum aestivum - leaf agroinfiltration]
  16. Shan, Q., Y. Wang, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686-688 (2013). [Oryza sativa and Triticum aestivum - PEG-protoplast transfection, particle bombardment of callus]
  17. Xie, K. and Y. Yang. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant. 6, 1975-1983 (2013). [Oryza sativa – PEG-protoplast transfection]
  18. Zhou, H. and B. Liu. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 42, 10903-10914 (2014). [Oryza sativa – PEG-protoplast transfection]
  19. Miao, J., D. Guo, et al. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233-1236 (2013). [Oryza sativa – agro-transformation of callus, transient particle bombardment of callus]
  20. Baysal, C., L. Bortesi, et al. CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa. Mol. Breeding. 36, (2016). [Oryza sativa - particle bombardment of embryos]
  21. Brooks, C., V. Nekrasov, et al. Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System. Plant Physiol. 166, 1292-1297 (2014). [Solanum lycopersicum - agro-transformation of cotyledons]
  22. Ron, M., K. Kajala, et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455-469 (2014). [Solanum lycopersicum - hairy root transformation by A. rhizogenes]
  23. Pan, C., L. Ye, et al. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci. Rep. 6 (2016). [Solanum lycopersicum - agro-transformation of leaf discs]
  24. Jia, H. and N. Wang. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One. 9, e93806 (2014). [Citrus sinensis - leaf agroinfiltration]
  25. Sugano, S.S., M. Shirakawa, et al. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol. 55, 475-481 (2014). [Marchantia polymorpha - agro-transformation of sporelings]
  26. Liang, Z., K. Zhang, et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics. 41, 63-68 (2014). [Zea mays – PEG-protoplast transfection]
  27. Shi, J., H. Gao, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. (2016). [Zea mays – particle bombardment of embryos]
  28. Nishitani, C., N. Hirai, et al. Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Sci. Rep. 6, (2016). [Malus prunifolia – agro-transformation of shoots]
  29. Fan, D., T. Liu, et al. Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation. Sci. Rep. 5, (2015). [Populus tomentosa – agro-transformation of leaf discs]
  30. Lawrenson, T., O. Shorinola, et al. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 15, (2015). [Hordeum vulgare and Brassica oleracea – agro-transformation of embryos, agro-transformation of cotyledonary petioles]

Additional Resources