One of the highest ideals in science is to observe natural events in their native context. Doing so is a constant challenge thanks to the Observer Effect, described by Heisenberg and others, where the act of observing or measuring a process alters it. Thus, scientists of all stripes try to get out of the way, attempting to produce the most accurate measurements possible using specific yet unobtrusive tools. Wildlife photographers use long-range lenses to avoid the need to stand directly in front of a herd of water buffalo and thereby affect the animals behavior. Psychologists create tests where the subjects are unaware of the true intent so as to minimize changes in natural responses.
29 result(s)
Knockout and tagged gene-editing can create cell lines ideal for antibody validation. Using CRISPR CAS technology, Horizon developed a streamlined process to cut production time. Read more in our interview with Lead Scientist Daniel Lackner.
The scientists at Horizon Discovery have published a robust and precise approach to generating translocations. This advancement facilitates the generation of relevant cell line models for oncology research.
There exist now a range of techniques to perform genome editing, such as ZFN, CRISPR, TALENS and AAV, each with their own strengths and weaknesses. However, one consistent element that has a significant impact on the success of that editing event when generating an isogenic cell line is the choice of parental cell line to be engineered.
Here you'll find a complete list of all our most frequently asked questions relating to HAP1 knockout cell lines. If you want to know how they're generated, how they're validated or how to find out if they're right for you - this is a great place to start.
Reporter gene assays are widely used to study the regulation of gene expression. We have developed a suite of endogenous reporter cell lines which measure natural levels of protein expression and promoter activity. By measuring at the endogenous level, this system provides an advantage over other technologies which use exogenous plasmid-based overexpression systems.
Much information about the role of specific genes in fundamental biological processes and the onset and progression of genetic disease has been gleaned by researchers having the ability to selectively alter the genomic composition of individual genes and study the consequences. This approach enables researchers to observe the effects of a specific mutation, SNP or deletion in combination with the added layers of regulation present within the cell, including post-translational modification, epigenetic changes associated with chromatin structure, and transcriptional mechanisms.
Cell lines remain one of the most important research tools in many labs today, be it for the study of basic subcellular processes or disease biology. The cell line selection is therefore a critical first step in any research project. Here’s a number of factors to consider, as well as resources to refer to when choosing your cell line (or lines).